Weld logo

Comparing IBM DataStage with Mozart Data and Weld

You’re comparing IBM DataStage vs Mozart Data vs Weld. Explore how they differ on connectors, pricing, and features. Ed Logo

informatica logo
VS
mozart logo
VS
weld logo

Loved by data teams from around the world

Weld vs IBM DataStage vs Mozart Data

WeldIBM DataStageMozart Data
Connectors200+200+150+
Price$99 / 5M Active RowsEnterprise licensing (custom, usually six-figure annual)Starts around $1,000/mo (includes Snowflake + ETL up to 250k MAR)
Free tier
LocationEUArmonk, NY, USA (IBM HQ)San Francisco, CA, USA
Extract data (ETL)
Sync to HubSpot, Salesforce, Klaviyo, Excel (reverse ETL)
Transformations
AI Assistant
On-Premise
Orchestration
Lineage
Version control
Load to/from ExcelYes (ODBC/flat files)Via CSV/Flat File uploads
Load to/from Google Sheets
Two-Way Sync
dbt Core Integration
dbt Cloud Integration
OpenAPI / Developer API
G2 rating4.844.6

Overview

IBM DataStage in Short

IBM DataStage (part of IBM InfoSphere Information Server) is a high-performance ETL and data integration platform that supports parallel processing and massive data volumes. It provides a visual design interface (DataStage Designer) to build data flows, along with features for metadata management, data lineage, and enterprise governance. DataStage can run on-premise or on cloud (via IBM Cloud Pak for Data) and integrates with IBM’s data quality and master data management solutions.

informatica logo

Pros

  • Parallel processing engine for high-throughput ETL, optimized for large data volumes.

  • Robust metadata management, data lineage, and governance via InfoSphere platform integration.

  • Supports on-premise, virtualized, and containerized (Cloud Pak) deployments for flexibility.

  • Extensive transformation library (data cleansing, lookups, joins) and connectivity (files, databases, mainframes, Hadoop).

Cons

  • High total cost of ownership: perpetual licensing and specialized administration needed.

  • User interface and development experience feel dated compared to modern cloud ETL tools.

  • Steep learning curve for job optimization (partitioning, parallel directives) and advanced features.

Reviews & Quotes

G2 Reviews:

What I like about IBM DataStage

Best data integration tool on the market with a wide range of connectors and advanced data integration and quality features.

What I dislike about IBM DataStage

I quite like the platform as a whole, but I believe it can improve regarding data lineage (it should indeed improve now with the arrival of Manta to the IBM portfolio).

Overview

Mozart Data in Short

Mozart Data is a managed data stack provider that bundles ETL (using embedded Fivetran/Portable connectors), a fully managed Snowflake warehouse, and dbt-based transformations under one subscription—aiming to get teams from zero to insights in under an hour without coding.

mozart logo

Pros

  • Out-of-the-box Snowflake data warehouse with connectors and dbt transforms in one package.

  • 150+ connectors (via embedded Fivetran + Portable) configured behind the scenes so you don’t manage separate tools.

  • Very fast onboarding—your data stack is live in under an hour without any code.

  • Dedicated customer support and onboarding assistance (Mozart Assist) helps users set up and maintain pipelines.

Cons

  • Pricing includes both warehouse usage and data volume (Monthly Active Rows), so costs rise with scale—often more expensive than self-managed ELT at high volumes.

  • Less flexibility for bespoke connector logic—if a connector is missing, you must submit a request and wait for their team.

  • Smaller community and fewer third-party tutorials compared to standalone tools like Airbyte or dbt.

Reviews & Quotes

Mozart Data Reviews (G2):

What I like about Mozart Data

Mozart Data gave us a turnkey stack with Snowflake, connectors, and transformations all configured. We were running dashboards in under a week without DevOps overhead.

What I dislike about Mozart Data

Costs can escalate quickly with high data volumes, and adding niche connectors often requires a request to their team (no self-serve).

Overview

Weld in Short

Weld is a powerful ETL platform that seamlessly integrates ELT, data transformations, reverse ETL, and AI-assisted features into one user-friendly solution. With its intuitive interface, Weld makes it easy for anyone, regardless of technical expertise, to build and manage data workflows. Known for its premium quality connectors, all built in-house, Weld ensures the highest quality and reliability for its users. It is designed to handle large datasets with near real-time data synchronization, making it ideal for modern data teams that require robust and efficient data integration solutions. Weld also leverages AI to automate repetitive tasks, optimize workflows, and enhance data transformation capabilities, ensuring maximum efficiency and productivity. Users can combine data from a wide variety of sources, including marketing platforms, CRMs, e-commerce platforms like Shopify, APIs, databases, Excel, Google Sheets, and more, providing a single source of truth for all their data.

weld logo

Pros

  • Lineage, orchestration, and workflow features

  • Ability to handle large datasets and near real-time data sync

  • ETL + reverse ETL in one

  • User-friendly and easy to set up

  • Flat monthly pricing model

  • 200+ connectors (Shopify, HubSpot, etc.)

  • AI assistant

Cons

  • Requires some technical knowledge around data warehousing and SQL

  • Limited features for advanced data teams

  • Focused on cloud data warehouses

Reviews & Quotes

A reviewer on G2 said:

What I like about Weld

First and foremost, Weld is incredibly user-friendly. The graphical interface is intuitive, which makes it easy to build data workflows quickly and efficiently. Even with little experience in SQL and pipeline management, we found that Weld was straightforward and easy to use. What really impressed me, however, was Weld's flexibility. It was able to handle data from a wide variety of sources, including SQL databases, Google Sheets, and even APIs. The solution also allowed us to customize my data transformations in a way that best suited my needs. Whether I needed to clean data, join tables, or aggregate data, Weld had the necessary tools to accomplish the task. Weld's performance was also exceptional. I was able to run large-scale ETL jobs quickly and efficiently, with minimal downtime via a Snowflake instance and visualization via own-hosted Metabase. The solution's scalability meant that I could process more data without any issues. Another standout feature of Weld was its support. I never felt lost or unsure about how to use a particular feature, as the support team was always quick to respond to any questions or concerns that I had. Overall, I highly recommend Weld as an ETL solution. Its user-friendliness, flexibility, performance, and support make it an excellent choice for anyone looking to streamline their data integration processes. I will definitely be using Weld for all my ETL needs going forward.

What I dislike about Weld

Weld is still limited to a certain number of integrations - although the team is super interested to hear if you need custom integrations.

Feature-by-Feature Comparison

Feature
informatica logo

IBM DataStage

mozart logo

Mozart Data

weld logo

Weld

Ease of Use & Interface

Side-by-side

informatica logo

IBM DataStage

DataStage Designer provides a visual canvas to build ETL jobs, but the interface is relatively old-school. Job parameters, parallelism, and performance tuning require specialized training. Monitoring and debugging use InfoSphere consoles.

mozart logo

Mozart Data

Mozart Data abstracts away infrastructure: users pick sources via a web UI, configure destinations, and their warehouse and pipelines spin up automatically. Minimal learning curve for non-technical teams.

weld logo

Weld

Weld is highly praised for its user-friendly interface and intuitive design, which allows even users with minimal SQL experience to manage data workflows efficiently. This makes it an excellent choice for smaller data teams or businesses without extensive technical resources.

Pricing & Affordability

Side-by-side

informatica logo

IBM DataStage

DataStage has high licensing costs (perpetual + support) and often requires dedicated hardware. Best suited for large enterprises with extensive ETL needs; cost-prohibitive for small/medium businesses.

mozart logo

Mozart Data

Mozart’s bundled pricing (data volume + warehouse compute) starts at ~$1,000/month for small usage, which can be competitive for teams that value time saved over cost. However, high-volume users may find it pricier than DIY stacks.

weld logo

Weld

Weld offers a straightforward and competitive pricing model, starting at $79 for 5 million active rows, making it more affordable and predictable, especially for small to medium-sized enterprises.

Feature Set

Side-by-side

informatica logo

IBM DataStage

Features include: visual job design, parallel processing (MPP), pushdown optimization (offloading to DB/Hadoop), data quality integration, metadata-driven development, and enterprise governance. Also supports REST and mainframe data sources.

mozart logo

Mozart Data

Includes managed Snowflake, automated ETL connectors (via Fivetran + Portable), a dbt transformation layer, and monitoring dashboards. Supports scheduling, incremental loads, and basic orchestrations without separate tools.

weld logo

Weld

Weld integrates ELT, data transformations, and reverse ETL all within one platform. It also provides advanced features such as data lineage, orchestration, workflow management, and an AI assistant, which helps in automating repetitive tasks and optimizing workflows.

Flexibility & Customization

Side-by-side

informatica logo

IBM DataStage

Custom logic can be written via routines (BASIC, Java, or Python) and embedded in jobs. DataStage can integrate with external schedulers (Control M) and monitoring tools. However, it’s not open-source, so feature evolution is tied to IBM’s roadmap.

mozart logo

Mozart Data

While Mozart Data handles most common use cases seamlessly, it limits custom code in pipelines. Advanced users can still bring their own SQL or dbt models, but building new connectors requires raising a request—no self-serve SDK.

weld logo

Weld

Weld offers advanced SQL modeling and transformations directly within its platform with the help of AI, providing users with unparalleled control and flexibility over their data. Leveraging its powerful AI capabilities, Weld automates repetitive tasks and optimizes data workflows, allowing teams to focus on getting value and insights. Additionally, Weld's custom connector framework enables users to build connectors to any API, making it easy to integrate new data sources and tailor data pipelines to meet specific business needs. This flexibility is particularly beneficial for teams looking to customize their data integration processes extensively and maximize the utility of their data without needing external tools.

Compare more ETL tools

Select up to three tools to compare.

Get started with Weld

Spend less time managing data and more time getting real insights.