Comparing IBM DataStage with Improvado and Weld



What is IBM DataStage
Pros
- Parallel processing engine for high-throughput ETL, optimized for large data volumes.
- Robust metadata management, data lineage, and governance via InfoSphere platform integration.
- Supports on-premise, virtualized, and containerized (Cloud Pak) deployments for flexibility.
- Extensive transformation library (data cleansing, lookups, joins) and connectivity (files, databases, mainframes, Hadoop).
Cons
- High total cost of ownership: perpetual licensing and specialized administration needed.
- User interface and development experience feel dated compared to modern cloud ETL tools.
- Steep learning curve for job optimization (partitioning, parallel directives) and advanced features.
IBM DataStage Overview:
What I like about IBM DataStage
DataStage excels at processing huge data volumes with parallelism and pushdown optimization. The metadata-driven approach makes lineage tracking and governance straightforward.
What I dislike about IBM DataStage
Licensing and maintenance costs are high, and the UI feels dated. Complex jobs require specialized knowledge to optimize performance.
What is Improvado
Pros
- Easy to use
- Great support and onboarding
- Automation features
- Flexibility
- Great for agencies with multiple accounts
Cons
- Expensive, especially for large data volumes
- Learning curve
- Limited features
- Limited integrations
A reviewer on G2:
What I like about Improvado
Improvado has been surprisingly easy to use. Within just a few clicks we have been able to integrate all our media platforms into our datalake. The numerous in-depth guides make this process very easy.
What I dislike about Improvado
What is Weld
Pros
- Premium quality connectors and reliability
- User-friendly and easy to set up
- AI assistant
- Very competitive and easy-to-understand pricing model
- Reverse ETL option
- Lineage, orchestration, and workflow features
- Advanced transformation and SQL modeling capabilities
- Ability to handle large datasets and near real-time data sync
- Combines data from a wide range of sources for a single source of truth
Cons
- Requires some technical knowledge around data warehousing and SQL
- Limited features for advanced data teams
A reviewer on G2 said:
What I like about Weld
First and foremost, Weld is incredibly user-friendly. The graphical interface is intuitive, which makes it easy to build data workflows quickly and efficiently. Even with little experience in SQL and pipeline management, we found that Weld was straightforward and easy to use. What really impressed me, however, was Weld's flexibility. It was able to handle data from a wide variety of sources, including SQL databases, Google Sheets, and even APIs. The solution also allowed us to customize my data transformations in a way that best suited my needs. Whether I needed to clean data, join tables, or aggregate data, Weld had the necessary tools to accomplish the task. Weld's performance was also exceptional. I was able to run large-scale ETL jobs quickly and efficiently, with minimal downtime via a Snowflake instance and visualization via own-hosted Metabase. The solution's scalability meant that I could process more data without any issues. Another standout feature of Weld was its support. I never felt lost or unsure about how to use a particular feature, as the support team was always quick to respond to any questions or concerns that I had. Overall, I highly recommend Weld as an ETL solution. Its user-friendliness, flexibility, performance, and support make it an excellent choice for anyone looking to streamline their data integration processes. I will definitely be using Weld for all my ETL needs going forward.
What I dislike about Weld
Weld is still limited to a certain number of integrations - although the team is super interested to hear if you need custom integrations.
IBM DataStage vs Improvado: Ease of Use and User Interface
IBM DataStage
DataStage Designer provides a visual canvas to build ETL jobs, but the interface is relatively old-school. Job parameters, parallelism, and performance tuning require specialized training. Monitoring and debugging use InfoSphere consoles.
Improvado
Improvado is known for its ease of use and strong support, making it a good choice for businesses looking to integrate multiple media platforms with minimal effort.
IBM DataStage vs Improvado: Pricing Transparency and Affordability
IBM DataStage
DataStage has high licensing costs (perpetual + support) and often requires dedicated hardware. Best suited for large enterprises with extensive ETL needs; cost-prohibitive for small/medium businesses.
Improvado
Improvado's pricing is custom, which can be expensive depending on data volumes, making it less accessible for small businesses but valuable for larger enterprises with extensive data needs.
IBM DataStage vs Improvado: Comprehensive Feature Set
IBM DataStage
Features include: visual job design, parallel processing (MPP), pushdown optimization (offloading to DB/Hadoop), data quality integration, metadata-driven development, and enterprise governance. Also supports REST and mainframe data sources.
Improvado
Improvado offers automation features and flexibility in data management and reporting, catering well to agencies handling multiple accounts.
IBM DataStage vs Improvado: Flexibility and Customization
IBM DataStage
Custom logic can be written via routines (BASIC, Java, or Python) and embedded in jobs. DataStage can integrate with external schedulers (Control M) and monitoring tools. However, it’s not open-source, so feature evolution is tied to IBM’s roadmap.
Improvado
Improvado provides flexibility in data integration and transformation, but has limited features compared to more comprehensive platforms, which might require additional customization for some use cases.
Summary of IBM DataStage vs Improvado vs Weld
Weld | IBM DataStage | Improvado | |
---|---|---|---|
Connectors | 200++ | 200+ | 500+ |
Price | €99 / Unlimited usage | Enterprise licensing (custom quotes, usually six-figure annual) | Custom |
Free tier | No | No | No |
Location | EU | Armonk, NY, USA (IBM HQ) | US |
Extract data (ETL) | Yes | Yes | Yes |
Sync data to HubSpot, Salesforce, Klaviyo, Excel etc. (reverse ETL) | Yes | No | No |
Transformations | Yes | Yes | Yes |
AI Assistant | Yes | No | No |
On-Premise | No | Yes | No |
Orchestration | Yes | Yes | No |
Lineage | Yes | Yes | No |
Version control | Yes | Yes | No |
Load data to and from Excel | Yes | Yes | No |
Load data to and from Google Sheets | Yes | No | No |
Two-Way Sync | Yes | No | No |
dbt Core Integration | Yes | No | No |
dbt Cloud Integration | Yes | No | No |
OpenAPI / Developer API | Yes | No | No |
G2 Rating | 4.8 | 4.2 | 4.5 |
Conclusion
You’re comparing IBM DataStage, Improvado, Weld. Each of these tools has its own strengths:
- IBM DataStage: features include: visual job design, parallel processing (mpp), pushdown optimization (offloading to db/hadoop), data quality integration, metadata-driven development, and enterprise governance. also supports rest and mainframe data sources. . datastage has high licensing costs (perpetual + support) and often requires dedicated hardware. best suited for large enterprises with extensive etl needs; cost-prohibitive for small/medium businesses. .
- Improvado: improvado offers automation features and flexibility in data management and reporting, catering well to agencies handling multiple accounts.. improvado's pricing is custom, which can be expensive depending on data volumes, making it less accessible for small businesses but valuable for larger enterprises with extensive data needs..
- Weld: weld integrates elt, data transformations, and reverse etl all within one platform. it also provides advanced features such as data lineage, orchestration, workflow management, and an ai assistant, which helps in automating repetitive tasks and optimizing workflows.. weld offers a straightforward and competitive pricing model, starting at €99 for 2 million active rows, making it more affordable and predictable, especially for small to medium-sized enterprises..