Comparing Dell Boomi with dlt (Data Load Tool) and Weld



What is Dell Boomi
Pros
- 200+ connectors for SaaS, on-prem, and big data sources.
- Cloud-native or on-prem Atom runtime allows hybrid deployments.
- Visual process designer with drag-and-drop mapping, enriched by shape-specific logic (e.g., function, decision, loop).
- Built-in error handling, version control, and CI/CD integration.
Cons
- Costly licensing structure (per-connection, per-Atom), which can escalate for high throughput or many connectors.
- Complex transformations sometimes still require scripting (JavaScript/Groovy), reducing low-code benefits for advanced scenarios.
- Learning curve: mastering Atoms, Molecules, and hybrid architecture requires time, particularly for non-technical users.
Dell Boomi Documentation:
What I like about Dell Boomi
Boomi’s AtomSphere makes deploying integration processes easy—Atommachines can run anywhere (cloud or on-prem), and the visual interface is intuitive for building mappings.
What I dislike about Dell Boomi
Licensing can be expensive, especially for high-volume data. Complex integrations can require coding despite the low-code promise.
What is dlt (Data Load Tool)
Pros
- Open-source and free to use
- High flexibility and control via Python code
- 60+ pre-built connectors with automatic schema evolution
- Built-in incremental loading and state management
- Embeddable in any orchestration (Airflow, Prefect, cron, etc.)
Cons
- No graphical UI—code-first, so not accessible to non-developers
- Requires engineering effort to deploy and schedule (no managed SaaS)
- Limited built-in transformations compared to dedicated ETL tools
- Monitoring and observability must be built around code (no native dashboard)
- Smaller community and support compared to more established tools
A reviewer on Medium:
What I like about dlt (Data Load Tool)
dlt is lightweight, customizable, and removes a lot of the boilerplate around API ingestion. With just a few lines of Python, we were able to create robust pipelines that handle schema changes and incremental loads seamlessly.
What I dislike about dlt (Data Load Tool)
What is Weld
Pros
- Premium quality connectors and reliability
- User-friendly and easy to set up
- AI assistant
- Very competitive and easy-to-understand pricing model
- Reverse ETL option
- Lineage, orchestration, and workflow features
- Advanced transformation and SQL modeling capabilities
- Ability to handle large datasets and near real-time data sync
- Combines data from a wide range of sources for a single source of truth
Cons
- Requires some technical knowledge around data warehousing and SQL
- Limited features for advanced data teams
A reviewer on G2 said:
What I like about Weld
First and foremost, Weld is incredibly user-friendly. The graphical interface is intuitive, which makes it easy to build data workflows quickly and efficiently. Even with little experience in SQL and pipeline management, we found that Weld was straightforward and easy to use. What really impressed me, however, was Weld's flexibility. It was able to handle data from a wide variety of sources, including SQL databases, Google Sheets, and even APIs. The solution also allowed us to customize my data transformations in a way that best suited my needs. Whether I needed to clean data, join tables, or aggregate data, Weld had the necessary tools to accomplish the task. Weld's performance was also exceptional. I was able to run large-scale ETL jobs quickly and efficiently, with minimal downtime via a Snowflake instance and visualization via own-hosted Metabase. The solution's scalability meant that I could process more data without any issues. Another standout feature of Weld was its support. I never felt lost or unsure about how to use a particular feature, as the support team was always quick to respond to any questions or concerns that I had. Overall, I highly recommend Weld as an ETL solution. Its user-friendliness, flexibility, performance, and support make it an excellent choice for anyone looking to streamline their data integration processes. I will definitely be using Weld for all my ETL needs going forward.
What I dislike about Weld
Weld is still limited to a certain number of integrations - although the team is super interested to hear if you need custom integrations.
Dell Boomi vs dlt (Data Load Tool): Ease of Use and User Interface
Dell Boomi
Boomi’s Integration Builder uses a web-based canvas to create process flows. Connectors and maps are configured via dialogs. Error-handling, version control, and deployment controls are integrated. Some users find building very complex workflows cumbersome despite the visual design.
dlt (Data Load Tool)
dlt has no graphical interface—pipelines are defined in Python code, making it easy for developers comfortable with code but inaccessible to non-technical users.
Dell Boomi vs dlt (Data Load Tool): Pricing Transparency and Affordability
Dell Boomi
Boomi’s pricing is multi-faceted—permanent Atom licenses, per-connection pricing, and usage-based charges for transactions. SMBs may need to request custom quotes to stay within budget.
dlt (Data Load Tool)
As an open-source library, dlt is free to use. Users only pay for the infrastructure required to run pipelines, making it highly affordable compared to paid SaaS solutions.
Dell Boomi vs dlt (Data Load Tool): Comprehensive Feature Set
Dell Boomi
Features: ETL/ELT processes, API management, EDI/B2B integration, workflow automation, data quality, and master data management. It also offers training, community forums, and professional services.
dlt (Data Load Tool)
dlt provides core pipeline features: connector library, schema inference, incremental loading, and state management. It supports major destinations (Snowflake, BigQuery, Redshift, PostgreSQL, Databricks) and allows in-Python transformations or dbt integration.
Dell Boomi vs dlt (Data Load Tool): Flexibility and Customization
Dell Boomi
Custom scripting is supported via Groovy or JavaScript for complex transforms. Atoms can be deployed virtually anywhere for hybrid use cases. However, you rely on Boomi for core engine updates; it’s not open-source.
dlt (Data Load Tool)
Because pipelines are written in Python, dlt offers unmatched customization—developers can fetch from any API, implement custom logic, and integrate with any orchestration or monitoring framework. This flexibility requires engineering investment but allows tailor-made solutions.
Summary of Dell Boomi vs dlt (Data Load Tool) vs Weld
Weld | Dell Boomi | dlt (Data Load Tool) | |
---|---|---|---|
Connectors | 200++ | 200+ | 60+ |
Price | €99 / Unlimited usage | Subscription-based (per Atom/connection; starts ~$1000/month) | Free (open-source) |
Free tier | No | No | No |
Location | EU | Austin, TX, USA | DE |
Extract data (ETL) | Yes | Yes | Yes |
Sync data to HubSpot, Salesforce, Klaviyo, Excel etc. (reverse ETL) | Yes | Yes | Yes |
Transformations | Yes | Yes | Yes |
AI Assistant | Yes | No | No |
On-Premise | No | Yes | Yes |
Orchestration | Yes | Yes | No |
Lineage | Yes | Yes | No |
Version control | Yes | Yes | Yes |
Load data to and from Excel | Yes | Yes | No |
Load data to and from Google Sheets | Yes | No | No |
Two-Way Sync | Yes | Yes | No |
dbt Core Integration | Yes | No | No |
dbt Cloud Integration | Yes | No | No |
OpenAPI / Developer API | Yes | Yes | Yes |
G2 Rating | 4.8 | 4.3 |
Conclusion
You’re comparing Dell Boomi, dlt (Data Load Tool), Weld. Each of these tools has its own strengths:
- Dell Boomi: features: etl/elt processes, api management, edi/b2b integration, workflow automation, data quality, and master data management. it also offers training, community forums, and professional services. . boomi’s pricing is multi-faceted—permanent atom licenses, per-connection pricing, and usage-based charges for transactions. smbs may need to request custom quotes to stay within budget. .
- dlt (Data Load Tool): dlt provides core pipeline features: connector library, schema inference, incremental loading, and state management. it supports major destinations (snowflake, bigquery, redshift, postgresql, databricks) and allows in-python transformations or dbt integration.. as an open-source library, dlt is free to use. users only pay for the infrastructure required to run pipelines, making it highly affordable compared to paid saas solutions..
- Weld: weld integrates elt, data transformations, and reverse etl all within one platform. it also provides advanced features such as data lineage, orchestration, workflow management, and an ai assistant, which helps in automating repetitive tasks and optimizing workflows.. weld offers a straightforward and competitive pricing model, starting at €99 for 2 million active rows, making it more affordable and predictable, especially for small to medium-sized enterprises..