🚀 New: Free Fivetran migration!

Learn more
Weld logo

Comparing Azure Data Factory with Pentaho Data Integration and Weld

Carolina Russ
Carolina Russ6 min read
weld logo
VS
pentaho logo
VS
azuredatafactory logo

What is Azure Data Factory

Azure Data Factory (ADF) is Microsoft’s cloud-based data integration service for creating ETL/ELT pipelines. ADF supports a drag-and-drop pipeline designer, over 90 built-in connectors for Azure, on-premises, and SaaS data sources, and can execute transformations via Azure Databricks, U-SQL, or stored procedures. It also includes features for data orchestration, monitoring, and hybrid data integration scenarios.

Pros

  • 90+ built-in connectors (Azure SQL, Cosmos DB, SAP, Oracle, Salesforce, etc.) and support for custom REST endpoints.
  • Visual pipeline orchestration with debug, parameterization, and Git integration for CI/CD.
  • Hybrid data integration via Self-hosted Integration Runtime for on-premises sources.
  • Integration with Azure Synapse, Databricks, and Azure Functions for flexible transformation and compute.

Cons

  • Complex pricing: charges per pipeline activity, per DIU for data flows, and for data movement across regions.
  • UI can be slow when working with large pipelines; error messages are often generic, requiring deeper investigation.
  • Steeper learning curve for advanced features (e.g., mapping data flows with Spark under the hood).

Azure Data Factory Documentation:

What I like about Azure Data Factory

ADF’s visual pipeline authoring and integration with other Azure services (Databricks, Synapse) make it easy to build end-to-end data workflows without managing infrastructure.

What I dislike about Azure Data Factory

Pricing is multifaceted (per activity run, data movement, SSIS integration), which can be hard to forecast. Debugging pipeline errors often requires sifting through activity logs.
Read full review

What is Pentaho Data Integration

Pentaho Data Integration (PDI), also known as Kettle, is an open-source ETL tool from Hitachi Vantara. It provides a graphical Spoon interface for building ETL transformations and jobs, supporting over 150 data sources (relational, NoSQL, cloud, files). PDI includes built-in steps for data cleansing, join, lookup, and can execute transformations in a clustered environment. It also integrates with Pentaho’s BI platform for analytics.

Pros

  • Open-source (Community Edition) with no licensing costs; Enterprise Edition provides additional features and support.
  • 150+ connectors (databases, cloud storage, big data, files, NoSQL) and flexible step-based transformations.
  • Graphical Spoon interface for visual ETL job design; transformations can be previewed and tested in real-time.
  • Support for clustered execution (Carte server) for parallel processing and higher throughput.

Cons

  • Community Edition lacks advanced features (lineage, data quality, enterprise monitoring), requiring Enterprise Edition for production readiness.
  • Performance can suffer with very large data volumes if not properly tuned (Java memory, clustering).
  • User interface and user experience are dated compared to newer cloud-native ETL tools.

Pentaho Data Integration Overview:

What I like about Pentaho Data Integration

PDI’s free community edition and Spoon GUI allow rapid ETL prototyping; its step library is extensive, and clustering support is solid for scale.

What I dislike about Pentaho Data Integration

Limited data quality features and slower development speed compared to modern cloud ETL. Community support can be slow for fixes.
Read full review

What is Weld

Weld is a powerful ETL platform that seamlessly integrates ELT, data transformations, reverse ETL, and AI-assisted features into one user-friendly solution. With its intuitive interface, Weld makes it easy for anyone, regardless of technical expertise, to build and manage data workflows. Known for its premium quality connectors, all built in-house, Weld ensures the highest quality and reliability for its users. It is designed to handle large datasets with near real-time data synchronization, making it ideal for modern data teams that require robust and efficient data integration solutions. Weld also leverages AI to automate repetitive tasks, optimize workflows, and enhance data transformation capabilities, ensuring maximum efficiency and productivity. Users can combine data from a wide variety of sources, including marketing platforms, CRMs, e-commerce platforms like Shopify, APIs, databases, Excel, Google Sheets, and more, providing a single source of truth for all their data.

Pros

  • Premium quality connectors and reliability
  • User-friendly and easy to set up
  • AI assistant
  • Very competitive and easy-to-understand pricing model
  • Reverse ETL option
  • Lineage, orchestration, and workflow features
  • Advanced transformation and SQL modeling capabilities
  • Ability to handle large datasets and near real-time data sync
  • Combines data from a wide range of sources for a single source of truth

Cons

  • Requires some technical knowledge around data warehousing and SQL
  • Limited features for advanced data teams

A reviewer on G2 said:

What I like about Weld

First and foremost, Weld is incredibly user-friendly. The graphical interface is intuitive, which makes it easy to build data workflows quickly and efficiently. Even with little experience in SQL and pipeline management, we found that Weld was straightforward and easy to use. What really impressed me, however, was Weld's flexibility. It was able to handle data from a wide variety of sources, including SQL databases, Google Sheets, and even APIs. The solution also allowed us to customize my data transformations in a way that best suited my needs. Whether I needed to clean data, join tables, or aggregate data, Weld had the necessary tools to accomplish the task. Weld's performance was also exceptional. I was able to run large-scale ETL jobs quickly and efficiently, with minimal downtime via a Snowflake instance and visualization via own-hosted Metabase. The solution's scalability meant that I could process more data without any issues. Another standout feature of Weld was its support. I never felt lost or unsure about how to use a particular feature, as the support team was always quick to respond to any questions or concerns that I had. Overall, I highly recommend Weld as an ETL solution. Its user-friendliness, flexibility, performance, and support make it an excellent choice for anyone looking to streamline their data integration processes. I will definitely be using Weld for all my ETL needs going forward.

What I dislike about Weld

Weld is still limited to a certain number of integrations - although the team is super interested to hear if you need custom integrations.
Read full review

Azure Data Factory vs Pentaho Data Integration: Ease of Use and User Interface

Azure Data Factory

ADF’s UI provides a canvas for building pipelines and data flows. Basic data movement is intuitive, but advanced mapping data flows (visual Spark transformations) require understanding Spark concepts. Integration with Git makes collaboration easier.

Pentaho Data Integration

Pentaho’s Spoon GUI uses a canvas paradigm: drag "steps" onto a transformation, connect them, and configure. While powerful, it can feel clunky, especially for very complex flows with many steps.

Azure Data Factory vs Pentaho Data Integration: Pricing Transparency and Affordability

Azure Data Factory

ADF charges per pipeline activity (at least $0.25/activity), per DIU-hour for data flows, plus data movement costs (e.g., $0.25/GB). Estimating costs can be tricky due to these components, but pay-as-you-go avoids upfront fees.

Pentaho Data Integration

The free Community Edition is attractive for experimentation. Enterprise Edition pricing is usage-based and includes support, lineag, and more; typically suited for mid-sized to large organizations.

Azure Data Factory vs Pentaho Data Integration: Comprehensive Feature Set

Azure Data Factory

Features include: pipeline orchestration, mapping data flows (visual Spark jobs), hybrid integration via self-hosted runtime, triggers (schedule, event, tumbling window), monitoring & alerting, and integration with Azure Monitor. Also supports SSIS lift-and-shift for on-prem ETL workloads.

Pentaho Data Integration

PDI features: GUI-based transformation designer, job orchestration, data cleansing, lookups, joins, scripting (JavaScript, PDI’s built-in “User Defined Java Expression”), logging, clustering, and integration with Pentaho BI for reporting. Lineage and monitoring in Enterprise.

Azure Data Factory vs Pentaho Data Integration: Flexibility and Customization

Azure Data Factory

ADF allows custom .NET activities, Azure Functions, and Databricks notebooks within pipelines. It supports parameterized templates, branching, and custom Azure ML scoring steps. However, customization often requires familiarity with other Azure services.

Pentaho Data Integration

Users can embed Java, JavaScript, or invoke external scripts. PDI’s open architecture allows custom plugins for new steps/connectors. The code is open-source, so full extensibility is available, though it requires Java development.

Summary of Azure Data Factory vs Pentaho Data Integration vs Weld

WeldAzure Data FactoryPentaho Data Integration
Connectors200++90+150+
Price$99 / Unlimited usagePay per activity run + data movement; starts ~$0.25 per DIU-hour for data flowsCommunity Edition: Free; Enterprise Edition: Custom pricing
Free tierNoYesYes
LocationEUAzure Global (multi-region)Santa Clara, CA, USA (Hitachi Vantara HQ)
Extract data (ETL)YesYesYes
Sync data to HubSpot, Salesforce, Klaviyo, Excel etc. (reverse ETL)YesNoNo
TransformationsYesYesYes
AI AssistantYesNoNo
On-PremiseNoNoYes
OrchestrationYesYesYes
LineageYesYesYes
Version controlYesYesYes
Load data to and from ExcelYesYesYes
Load data to and from Google SheetsYesNoYes
Two-Way SyncYesNoNo
dbt Core IntegrationYesNoNo
dbt Cloud IntegrationYesNoNo
OpenAPI / Developer APIYesNoNo
G2 Rating4.84.44.1

Conclusion

You’re comparing Azure Data Factory, Pentaho Data Integration, Weld. Each of these tools has its own strengths:

  • Azure Data Factoryfeatures include: pipeline orchestration, mapping data flows (visual spark jobs), hybrid integration via self-hosted runtime, triggers (schedule, event, tumbling window), monitoring & alerting, and integration with azure monitor. also supports ssis lift-and-shift for on-prem etl workloads. adf charges per pipeline activity (at least $0.25/activity), per diu-hour for data flows, plus data movement costs (e.g., $0.25/gb). estimating costs can be tricky due to these components, but pay-as-you-go avoids upfront fees. .
  • Pentaho Data Integrationpdi features: gui-based transformation designer, job orchestration, data cleansing, lookups, joins, scripting (javascript, pdi’s built-in “user defined java expression”), logging, clustering, and integration with pentaho bi for reporting. lineage and monitoring in enterprise. the free community edition is attractive for experimentation. enterprise edition pricing is usage-based and includes support, lineag, and more; typically suited for mid-sized to large organizations. .
  • Weldweld integrates elt, data transformations, and reverse etl all within one platform. it also provides advanced features such as data lineage, orchestration, workflow management, and an ai assistant, which helps in automating repetitive tasks and optimizing workflows.weld offers a straightforward and competitive pricing model, starting at $99 for 2 million active rows, making it more affordable and predictable, especially for small to medium-sized enterprises..
Review the detailed sections above—connectors, pricing, feature set, and integrations—and choose the one that best matches your technical expertise, budget, and use cases.

Want to try a better alternative? Try Weld for free today.