Comparing Azure Data Factory with Etlworks Integrator and Weld



What is Azure Data Factory
Pros
- 90+ built-in connectors (Azure SQL, Cosmos DB, SAP, Oracle, Salesforce, etc.) and support for custom REST endpoints.
- Visual pipeline orchestration with debug, parameterization, and Git integration for CI/CD.
- Hybrid data integration via Self-hosted Integration Runtime for on-premises sources.
- Integration with Azure Synapse, Databricks, and Azure Functions for flexible transformation and compute.
Cons
- Complex pricing: charges per pipeline activity, per DIU for data flows, and for data movement across regions.
- UI can be slow when working with large pipelines; error messages are often generic, requiring deeper investigation.
- Steeper learning curve for advanced features (e.g., mapping data flows with Spark under the hood).
Azure Data Factory Documentation:
What I like about Azure Data Factory
ADF’s visual pipeline authoring and integration with other Azure services (Databricks, Synapse) make it easy to build end-to-end data workflows without managing infrastructure.
What I dislike about Azure Data Factory
Pricing is multifaceted (per activity run, data movement, SSIS integration), which can be hard to forecast. Debugging pipeline errors often requires sifting through activity logs.
What is Etlworks Integrator
Pros
- 300+ connectors for databases, cloud storage, SaaS apps, and streaming platforms.
- Supports both batch and streaming (CDC) with configurable schedules and triggers.
- Transformations via SQL, JavaScript, or built-in functions; data validation and error-handling features.
- Cloud-based with on-prem runtime options for connecting to internal resources securely.
Cons
- UI complexity: designing flows with many steps can be difficult to navigate.
- Subscription is credit-based (e.g., $0.10/credit), making cost estimation tricky for variable workloads.
- Less brand recognition and community support compared to leading ETL tools.
Etlworks Integrator Features:
What I like about Etlworks Integrator
Etlworks Integrator’s breadth of connectors and flexible transformation engine (SQL/JavaScript) let us integrate data from dozens of sources quickly.
What I dislike about Etlworks Integrator
The UI can be overwhelming for beginners, and pricing (credit-based) can be hard to predict for varying workloads.
What is Weld
Pros
- Premium quality connectors and reliability
- User-friendly and easy to set up
- AI assistant
- Very competitive and easy-to-understand pricing model
- Reverse ETL option
- Lineage, orchestration, and workflow features
- Advanced transformation and SQL modeling capabilities
- Ability to handle large datasets and near real-time data sync
- Combines data from a wide range of sources for a single source of truth
Cons
- Requires some technical knowledge around data warehousing and SQL
- Limited features for advanced data teams
A reviewer on G2 said:
What I like about Weld
First and foremost, Weld is incredibly user-friendly. The graphical interface is intuitive, which makes it easy to build data workflows quickly and efficiently. Even with little experience in SQL and pipeline management, we found that Weld was straightforward and easy to use. What really impressed me, however, was Weld's flexibility. It was able to handle data from a wide variety of sources, including SQL databases, Google Sheets, and even APIs. The solution also allowed us to customize my data transformations in a way that best suited my needs. Whether I needed to clean data, join tables, or aggregate data, Weld had the necessary tools to accomplish the task. Weld's performance was also exceptional. I was able to run large-scale ETL jobs quickly and efficiently, with minimal downtime via a Snowflake instance and visualization via own-hosted Metabase. The solution's scalability meant that I could process more data without any issues. Another standout feature of Weld was its support. I never felt lost or unsure about how to use a particular feature, as the support team was always quick to respond to any questions or concerns that I had. Overall, I highly recommend Weld as an ETL solution. Its user-friendliness, flexibility, performance, and support make it an excellent choice for anyone looking to streamline their data integration processes. I will definitely be using Weld for all my ETL needs going forward.
What I dislike about Weld
Weld is still limited to a certain number of integrations - although the team is super interested to hear if you need custom integrations.
Azure Data Factory vs Etlworks Integrator: Ease of Use and User Interface
Azure Data Factory
ADF’s UI provides a canvas for building pipelines and data flows. Basic data movement is intuitive, but advanced mapping data flows (visual Spark transformations) require understanding Spark concepts. Integration with Git makes collaboration easier.
Etlworks Integrator
Etlworks Integrator’s Flow Designer uses a canvas with source, transformation, and destination steps. While powerful and flexible, the interface has a steep learning curve; nested steps and branching can become difficult to visualize.
Azure Data Factory vs Etlworks Integrator: Pricing Transparency and Affordability
Azure Data Factory
ADF charges per pipeline activity (at least $0.25/activity), per DIU-hour for data flows, plus data movement costs (e.g., $0.25/GB). Estimating costs can be tricky due to these components, but pay-as-you-go avoids upfront fees.
Etlworks Integrator
Charges are based on credits consumed by data volume and transformations. Free trial provides limited credits. For predictable workloads, budget forecasting requires careful usage analysis.
Azure Data Factory vs Etlworks Integrator: Comprehensive Feature Set
Azure Data Factory
Features include: pipeline orchestration, mapping data flows (visual Spark jobs), hybrid integration via self-hosted runtime, triggers (schedule, event, tumbling window), monitoring & alerting, and integration with Azure Monitor. Also supports SSIS lift-and-shift for on-prem ETL workloads.
Etlworks Integrator
Features include: 300+ connectors, CDC replication, batch/streaming pipelines, SQL/JavaScript transformations, error handling, scheduling, and secure on-prem gateways. Also supports webhooks and REST API triggers.
Azure Data Factory vs Etlworks Integrator: Flexibility and Customization
Azure Data Factory
ADF allows custom .NET activities, Azure Functions, and Databricks notebooks within pipelines. It supports parameterized templates, branching, and custom Azure ML scoring steps. However, customization often requires familiarity with other Azure services.
Etlworks Integrator
Supports embedding custom JavaScript or calling external services within pipelines. Can deploy integration nodes on-premise to access internal networks. Pipelines can be exported/imported for version control.
Summary of Azure Data Factory vs Etlworks Integrator vs Weld
Weld | Azure Data Factory | Etlworks Integrator | |
---|---|---|---|
Connectors | 200++ | 90+ | 300+ |
Price | $99 / Unlimited usage | Pay per activity run + data movement; starts ~$0.25 per DIU-hour for data flows | Credit-based (e.g., $0.10/credit; volume discounts available) |
Free tier | No | Yes | Yes |
Location | EU | Azure Global (multi-region) | Pittsburgh, PA, USA |
Extract data (ETL) | Yes | Yes | Yes |
Sync data to HubSpot, Salesforce, Klaviyo, Excel etc. (reverse ETL) | Yes | No | No |
Transformations | Yes | Yes | Yes |
AI Assistant | Yes | No | No |
On-Premise | No | No | Yes |
Orchestration | Yes | Yes | Yes |
Lineage | Yes | Yes | No |
Version control | Yes | Yes | No |
Load data to and from Excel | Yes | Yes | Yes |
Load data to and from Google Sheets | Yes | No | Yes |
Two-Way Sync | Yes | No | No |
dbt Core Integration | Yes | No | No |
dbt Cloud Integration | Yes | No | No |
OpenAPI / Developer API | Yes | No | Yes |
G2 Rating | 4.8 | 4.4 | 4.5 |
Conclusion
You’re comparing Azure Data Factory, Etlworks Integrator, Weld. Each of these tools has its own strengths:
- Azure Data Factory: features include: pipeline orchestration, mapping data flows (visual spark jobs), hybrid integration via self-hosted runtime, triggers (schedule, event, tumbling window), monitoring & alerting, and integration with azure monitor. also supports ssis lift-and-shift for on-prem etl workloads. . adf charges per pipeline activity (at least $0.25/activity), per diu-hour for data flows, plus data movement costs (e.g., $0.25/gb). estimating costs can be tricky due to these components, but pay-as-you-go avoids upfront fees. .
- Etlworks Integrator: features include: 300+ connectors, cdc replication, batch/streaming pipelines, sql/javascript transformations, error handling, scheduling, and secure on-prem gateways. also supports webhooks and rest api triggers. . charges are based on credits consumed by data volume and transformations. free trial provides limited credits. for predictable workloads, budget forecasting requires careful usage analysis. .
- Weld: weld integrates elt, data transformations, and reverse etl all within one platform. it also provides advanced features such as data lineage, orchestration, workflow management, and an ai assistant, which helps in automating repetitive tasks and optimizing workflows.. weld offers a straightforward and competitive pricing model, starting at $99 for 2 million active rows, making it more affordable and predictable, especially for small to medium-sized enterprises..