What I like about Azure Data Factory
“Its flexibiliity in connecting diverse data sources and integration with the Azure ecosystem are standout advantages.”
You’re comparing Azure Data Factory vs Estuary vs Weld. Explore how they differ on connectors, pricing, and features.


Loved by data teams from around the world
| Weld | Azure Data Factory | Estuary | |
|---|---|---|---|
| Connectors | 200+ | 90+ | 200+ |
| Price | $99 / 5M Active Rows | Pay per activity run + data movement; starts ~$0.25 per DIU-hour for data flows | $0.50/GB consumed + per-connector fee |
| Free tier | |||
| Location | EU | Azure Global (multi-region) | New York, NY, USA |
| Extract data (ETL) | |||
| Sync to HubSpot, Salesforce, Klaviyo, Excel (reverse ETL) | |||
| Transformations | |||
| AI Assistant | |||
| On-Premise | |||
| Orchestration | |||
| Lineage | |||
| Version control | |||
| Load to/from Excel | Yes (via REST connectors or staged files) | ||
| Load to/from Google Sheets | |||
| Two-Way Sync | |||
| dbt Core Integration | |||
| dbt Cloud Integration | |||
| OpenAPI / Developer API | |||
| G2 rating | 4.8 | 4.4 | 4.8 |
Overview
Azure Data Factory (ADF) is Microsoft’s cloud-based data integration service for creating ETL/ELT pipelines. ADF supports a drag-and-drop pipeline designer, over 90 built-in connectors for Azure, on-premises, and SaaS data sources, and can execute transformations via Azure Databricks, U-SQL, or stored procedures. It also includes features for data orchestration, monitoring, and hybrid data integration scenarios.

90+ built-in connectors (Azure SQL, Cosmos DB, SAP, Oracle, Salesforce, etc.) and support for custom REST endpoints.
Visual pipeline orchestration with debug, parameterization, and Git integration for CI/CD.
Hybrid data integration via Self-hosted Integration Runtime for on-premises sources.
Integration with Azure Synapse, Databricks, and Azure Functions for flexible transformation and compute.
Complex pricing: charges per pipeline activity, per DIU for data flows, and for data movement across regions.
UI can be slow when working with large pipelines; error messages are often generic, requiring deeper investigation.
Steeper learning curve for advanced features (e.g., mapping data flows with Spark under the hood).
Gartner Peer Review:
“Its flexibiliity in connecting diverse data sources and integration with the Azure ecosystem are standout advantages.”
“Some features are too rigid. Lack of detailed error messages can plague a workstream during setup.”
Overview
Estuary Flow is a real-time ETL/ELT and data integration platform for both batch and streaming pipelines. It provides sub-100ms latency using Change Data Capture (CDC), supports automated schema evolution, and allows users to build entire pipelines with low- or no-code connectors in minutes. It can target data warehouses (e.g., Snowflake, BigQuery), BI tools, and operational systems for analytics, operations, and AI use cases.

Purpose-built for real-time CDC and streaming ETL with sub-100ms latency.
Automatic schema evolution with exactly-once delivery guarantees.
200+ no-code connectors for databases, SaaS apps, and message queues.
Flexible deployment: public cloud, private cloud, or self-hosted (BYOC).
Premium pricing model ($0.50/GB consumed + connector fees) can be expensive for small teams.
Still growing connector catalog; niche or very new APIs may require custom work.
Smaller community compared to older open-source tools, meaning fewer community-built resources.
Estuary Pricing Page:
“Estuary’s real-time, no-code model is magical—getting data instantly with minimal effort and near-zero pipeline maintenance. Plus, their support is fantastic.”
“Pricing can be high for lower-volume teams, and some less-common connectors are still in development, which limits immediate use cases for niche sources.”
Overview
Weld is a powerful ETL platform that seamlessly integrates ELT, data transformations, reverse ETL, and AI-assisted features into one user-friendly solution. With its intuitive interface, Weld makes it easy for anyone, regardless of technical expertise, to build and manage data workflows. Known for its premium quality connectors, all built in-house, Weld ensures the highest quality and reliability for its users. It is designed to handle large datasets with near real-time data synchronization, making it ideal for modern data teams that require robust and efficient data integration solutions. Weld also leverages AI to automate repetitive tasks, optimize workflows, and enhance data transformation capabilities, ensuring maximum efficiency and productivity. Users can combine data from a wide variety of sources, including marketing platforms, CRMs, e-commerce platforms like Shopify, APIs, databases, Excel, Google Sheets, and more, providing a single source of truth for all their data.
Lineage, orchestration, and workflow features
Ability to handle large datasets and near real-time data sync
ETL + reverse ETL in one
User-friendly and easy to set up
Flat monthly pricing model
200+ connectors (Shopify, HubSpot, etc.)
AI assistant
Requires some technical knowledge around data warehousing and SQL
Limited features for advanced data teams
Focused on cloud data warehouses
A reviewer on G2 said:
“Weld is still limited to a certain number of integrations - although the team is super interested to hear if you need custom integrations.”




Side-by-side

ADF’s UI provides a canvas for building pipelines and data flows. Basic data movement is intuitive, but advanced mapping data flows (visual Spark transformations) require understanding Spark concepts. Integration with Git makes collaboration easier.

Estuary’s UI is intuitive: users can add connectors, configure CDC streams, and specify destinations in a few clicks. Complex transformations can be written in SQL or TypeScript directly in the Flow editor, but most tasks are handled via no-code connectors.
Weld is highly praised for its user-friendly interface and intuitive design, which allows even users with minimal SQL experience to manage data workflows efficiently. This makes it an excellent choice for smaller data teams or businesses without extensive technical resources.
Side-by-side
ADF’s UI provides a canvas for building pipelines and data flows. Basic data movement is intuitive, but advanced mapping data flows (visual Spark transformations) require understanding Spark concepts. Integration with Git makes collaboration easier.
Estuary’s UI is intuitive: users can add connectors, configure CDC streams, and specify destinations in a few clicks. Complex transformations can be written in SQL or TypeScript directly in the Flow editor, but most tasks are handled via no-code connectors.
Weld is highly praised for its user-friendly interface and intuitive design, which allows even users with minimal SQL experience to manage data workflows efficiently. This makes it an excellent choice for smaller data teams or businesses without extensive technical resources.
Side-by-side

ADF charges per pipeline activity (at least $0.25/activity), per DIU-hour for data flows, plus data movement costs (e.g., $0.25/GB). Estimating costs can be tricky due to these components, but pay-as-you-go avoids upfront fees.

While Estuary provides a 10 GB/month free tier and a 30-day trial, its consumption-based pricing ($0.50/GB + connector fees) can become costly at scale. Teams processing hundreds of GBs per month should budget accordingly.
Weld offers a straightforward and competitive pricing model, starting at $79 for 5 million active rows, making it more affordable and predictable, especially for small to medium-sized enterprises.
Side-by-side
ADF charges per pipeline activity (at least $0.25/activity), per DIU-hour for data flows, plus data movement costs (e.g., $0.25/GB). Estimating costs can be tricky due to these components, but pay-as-you-go avoids upfront fees.
While Estuary provides a 10 GB/month free tier and a 30-day trial, its consumption-based pricing ($0.50/GB + connector fees) can become costly at scale. Teams processing hundreds of GBs per month should budget accordingly.
Weld offers a straightforward and competitive pricing model, starting at $79 for 5 million active rows, making it more affordable and predictable, especially for small to medium-sized enterprises.
Side-by-side

Features include: pipeline orchestration, mapping data flows (visual Spark jobs), hybrid integration via self-hosted runtime, triggers (schedule, event, tumbling window), monitoring & alerting, and integration with Azure Monitor. Also supports SSIS lift-and-shift for on-prem ETL workloads.

Key features include real-time CDC (sub-100ms latency), batch and streaming pipelines, automated schema evolution, and in-stream or post-load transformations via SQL/TypeScript or dbt. It also supports Kafka-compatibility and private storage for data replay.
Weld integrates ELT, data transformations, and reverse ETL all within one platform. It also provides advanced features such as data lineage, orchestration, workflow management, and an AI assistant, which helps in automating repetitive tasks and optimizing workflows.
Side-by-side
Features include: pipeline orchestration, mapping data flows (visual Spark jobs), hybrid integration via self-hosted runtime, triggers (schedule, event, tumbling window), monitoring & alerting, and integration with Azure Monitor. Also supports SSIS lift-and-shift for on-prem ETL workloads.
Key features include real-time CDC (sub-100ms latency), batch and streaming pipelines, automated schema evolution, and in-stream or post-load transformations via SQL/TypeScript or dbt. It also supports Kafka-compatibility and private storage for data replay.
Weld integrates ELT, data transformations, and reverse ETL all within one platform. It also provides advanced features such as data lineage, orchestration, workflow management, and an AI assistant, which helps in automating repetitive tasks and optimizing workflows.
Side-by-side

ADF allows custom .NET activities, Azure Functions, and Databricks notebooks within pipelines. It supports parameterized templates, branching, and custom Azure ML scoring steps. However, customization often requires familiarity with other Azure services.

Estuary allows custom TypeScript transforms in-stream or SQL in-destination. Pipelines can be managed via CLI (flowctl) and integrated into CI/CD. While most connectors are no-code, custom connectors can be built using the open-source Flow SDK.
Weld offers advanced SQL modeling and transformations directly within its platform with the help of AI, providing users with unparalleled control and flexibility over their data. Leveraging its powerful AI capabilities, Weld automates repetitive tasks and optimizes data workflows, allowing teams to focus on getting value and insights. Additionally, Weld's custom connector framework enables users to build connectors to any API, making it easy to integrate new data sources and tailor data pipelines to meet specific business needs. This flexibility is particularly beneficial for teams looking to customize their data integration processes extensively and maximize the utility of their data without needing external tools.
Side-by-side
ADF allows custom .NET activities, Azure Functions, and Databricks notebooks within pipelines. It supports parameterized templates, branching, and custom Azure ML scoring steps. However, customization often requires familiarity with other Azure services.
Estuary allows custom TypeScript transforms in-stream or SQL in-destination. Pipelines can be managed via CLI (flowctl) and integrated into CI/CD. While most connectors are no-code, custom connectors can be built using the open-source Flow SDK.
Weld offers advanced SQL modeling and transformations directly within its platform with the help of AI, providing users with unparalleled control and flexibility over their data. Leveraging its powerful AI capabilities, Weld automates repetitive tasks and optimizes data workflows, allowing teams to focus on getting value and insights. Additionally, Weld's custom connector framework enables users to build connectors to any API, making it easy to integrate new data sources and tailor data pipelines to meet specific business needs. This flexibility is particularly beneficial for teams looking to customize their data integration processes extensively and maximize the utility of their data without needing external tools.
AWARD WINNING ETL PLATFORM
Spend less time managing data and more time getting real insights.