Comparing AWS Glue with Google Cloud Dataflow and Weld


What is AWS Glue
Pros
- Serverless, no infrastructure to manage; Glue provisions compute as needed (Apache Spark under the hood).
- Built-in Data Catalog for schema discovery, versioning, and integration with Athena and Redshift Spectrum.
- Supports Python (PySpark) and Scala ETL scripts with mapping and transformation APIs for complex logic.
- Deep integration with AWS ecosystem (CloudWatch monitoring, IAM for security, S3 triggers).
Cons
- Cost can be unpredictable for long-running or high-concurrency jobs (billed per Data Processing Unit-hour).
- Debugging PySpark jobs in Glue requires jumping between AWS console logs and code; local testing is limited compared to local Spark.
- On-premises or multi-cloud data sources require additional setup (Glue has JDBC connectors but network config can be complex).
G2 Reviews:
What I like about AWS Glue
My team build a framework to fetch data from different platform through AWS Glue and stores them in S3 in the file format mention by us. That make our integration and fetching data a lot easier.
What I dislike about AWS Glue
Does not support xml file formats.
What is Google Cloud Dataflow
Pros
- Unified batch + streaming model via Apache Beam SDK (Java/Python).
- Serverless autoscaling with dynamic work rebalancing for cost and performance optimization.
- First-class integration with GCP services: Pub/Sub, BigQuery I/O connectors, Cloud Storage, Spanner, etc.
- Built-in exactly-once processing semantics and windowing capabilities for streaming ETL.
Cons
- Steep learning curve if unfamiliar with Apache Beam’s abstractions (PCollections, DoFns, pipelines).
- Monitoring and debugging streaming pipelines can be complex—metrics and logs often require cross-referencing.
- Cost can rise quickly for large-scale streaming (billed per vCPU-second and memory). Efficient pipeline tuning is critical.
G2 Reviews:
What I like about Google Cloud Dataflow
Google cloud dataflow is automatically optimize and manages resources for you this platform supports multiple programming languages including Python, java and SQL and makes it easy for developers to focus on writing codes
What I dislike about Google Cloud Dataflow
It is costly as compared to other solutions
What is Weld
Pros
- Lineage, orchestration, and workflow features
- Ability to handle large datasets and near real-time data sync
- ETL + reverse ETL in one
- User-friendly and easy to set up
- Flat monthly pricing model
- 200+ connectors (Shopify, HubSpot, etc.)
- AI assistant
Cons
- Requires some technical knowledge around data warehousing and SQL
- Limited features for advanced data teams
- Focused on cloud data warehouses
A reviewer on G2 said:
What I like about Weld
First and foremost, Weld is incredibly user-friendly. The graphical interface is intuitive, which makes it easy to build data workflows quickly and efficiently. Even with little experience in SQL and pipeline management, we found that Weld was straightforward and easy to use. What really impressed me, however, was Weld's flexibility. It was able to handle data from a wide variety of sources, including SQL databases, Google Sheets, and even APIs. The solution also allowed us to customize my data transformations in a way that best suited my needs. Whether I needed to clean data, join tables, or aggregate data, Weld had the necessary tools to accomplish the task. Weld's performance was also exceptional. I was able to run large-scale ETL jobs quickly and efficiently, with minimal downtime via a Snowflake instance and visualization via own-hosted Metabase. The solution's scalability meant that I could process more data without any issues. Another standout feature of Weld was its support. I never felt lost or unsure about how to use a particular feature, as the support team was always quick to respond to any questions or concerns that I had. Overall, I highly recommend Weld as an ETL solution. Its user-friendliness, flexibility, performance, and support make it an excellent choice for anyone looking to streamline their data integration processes. I will definitely be using Weld for all my ETL needs going forward.
What I dislike about Weld
Weld is still limited to a certain number of integrations - although the team is super interested to hear if you need custom integrations.
Feature-by-Feature Comparison
Ease of Use & Interface
AWS Glue
AWS Glue Studio provides a visual job authoring interface where you can drag-and-drop nodes to transform data, but deeper customizations still require PySpark code. The console UI can be intimidating for new users.
Google Cloud Dataflow
Dataflow pipelines are defined programmatically in Java or Python (Apache Beam). There is no drag-and-drop UI; developers use the Cloud Console or CLI to monitor, but pipeline creation and debugging happen in code and SDKs.
Pricing & Affordability
AWS Glue
Glue charges per Data Processing Unit (DPU)-hour; for example, running a small job for one hour costs ~$0.44 * number of DPUs used. While serverless, large or long-running jobs can become costly if not optimized.
Google Cloud Dataflow
Charges for each pipeline based on vCPU-second, memory, and persistent disk usage. Streaming jobs are billed continuously. Without careful optimization (autoscaling, batching), costs can escalate. However, for high-throughput workloads, serverless autoscaling can be cost-effective versus self-managed clusters.
Feature Set
AWS Glue
Features include automated schema discovery (Glue Data Catalog), PySpark/Scala job generation, job scheduling & triggers, DataBrew for visual data prep, and Glue Workflows for orchestration. Also supports streaming ETL via Glue streaming jobs.
Google Cloud Dataflow
Features include: Batch & streaming unified model, windowing & triggers, exactly-once semantics, dynamic work rebalancing, and data-driven autoscaling. Supports FlexRS (spot pricing for batch) and integration with Dataflow SQL for SQL-based pipelines.
Flexibility & Customization
AWS Glue
Glue allows custom PySpark scripts, supports Python libraries via wheel files, and you can integrate with AWS Lambda for custom triggers. However, debugging and local runs can be challenging compared to self-managed Spark.
Google Cloud Dataflow
Users write custom transforms (ParDo, Map, GroupBy), can integrate UDFs, and use side inputs. Complex workloads requiring custom logic (stateful processing, custom connectors) are fully supported via Beam SDK. Cloud features like VPC, IAM, and KMS integrate security.
Summary of AWS Glue vs Google Cloud Dataflow vs Weld
| Weld | AWS Glue | Google Cloud Dataflow | |
|---|---|---|---|
| Connectors | 200+ | 50+ | 30+ |
| Price | $79 / 5M Active Rows | $0.44 per DPUs-hour (development endpoints) + per-job costs | Per vCPU-second ($0.0106/vCPU-minute) + RAM and storage; streaming pipelines incur additional costs |
| Free tier | No | Yes | No |
| Location | EU | AWS Global (multi-region) | GCP Global (multi-region) |
| Extract data (ETL) | Yes | Yes | Yes |
| Sync data to HubSpot, Salesforce, Klaviyo, Excel etc. (reverse ETL) | Yes | No | No |
| Transformations | Yes | Yes | Yes |
| AI Assistant | Yes | No | No |
| On-Premise | No | No | No |
| Orchestration | Yes | Yes | No |
| Lineage | Yes | Yes | No |
| Version control | Yes | No | No |
| Load data to and from Excel | Yes | Yes | Yes |
| Load data to and from Google Sheets | Yes | No | No |
| Two-Way Sync | Yes | No | No |
| dbt Core Integration | Yes | Yes | No |
| dbt Cloud Integration | Yes | No | No |
| OpenAPI / Developer API | Yes | No | No |
| G2 Rating | 4.8 | 4.1 | 4.5 |
Conclusion
You’re comparing AWS Glue, Google Cloud Dataflow, Weld. Each of these tools has its own strengths:
- AWS Glue: features include automated schema discovery (glue data catalog), pyspark/scala job generation, job scheduling & triggers, databrew for visual data prep, and glue workflows for orchestration. also supports streaming etl via glue streaming jobs. . glue charges per data processing unit (dpu)-hour; for example, running a small job for one hour costs ~$0.44 * number of dpus used. while serverless, large or long-running jobs can become costly if not optimized. .
- Google Cloud Dataflow: features include: batch & streaming unified model, windowing & triggers, exactly-once semantics, dynamic work rebalancing, and data-driven autoscaling. supports flexrs (spot pricing for batch) and integration with dataflow sql for sql-based pipelines. . charges for each pipeline based on vcpu-second, memory, and persistent disk usage. streaming jobs are billed continuously. without careful optimization (autoscaling, batching), costs can escalate. however, for high-throughput workloads, serverless autoscaling can be cost-effective versus self-managed clusters. .
- Weld: weld integrates elt, data transformations, and reverse etl all within one platform. it also provides advanced features such as data lineage, orchestration, workflow management, and an ai assistant, which helps in automating repetitive tasks and optimizing workflows.. weld offers a straightforward and competitive pricing model, starting at $79 for 5 million active rows, making it more affordable and predictable, especially for small to medium-sized enterprises..