Comparing AWS Glue with dlt (Data Load Tool) and Weld



What is AWS Glue
Pros
- Serverless—no infrastructure to manage; Glue provisions compute as needed (Apache Spark under the hood).
- Built-in Data Catalog for schema discovery, versioning, and integration with Athena and Redshift Spectrum.
- Supports Python (PySpark) and Scala ETL scripts with mapping and transformation APIs for complex logic.
- Deep integration with AWS ecosystem (CloudWatch monitoring, IAM for security, S3 triggers).
Cons
- Cost can be unpredictable for long-running or high-concurrency jobs (billed per Data Processing Unit-hour).
- Debugging PySpark jobs in Glue requires jumping between AWS console logs and code; local testing is limited compared to local Spark.
- On-premises or multi-cloud data sources require additional setup (Glue has JDBC connectors but network config can be complex).
AWS Glue Documentation:
What I like about AWS Glue
Glue’s automatic schema discovery and code generation speed up ETL development—once you point it to a data source, it builds tables in the Data Catalog and scaffolds PySpark jobs for you.
What I dislike about AWS Glue
Managing large-scale Glue jobs can be tricky—job concurrency limits and developer debugging in PySpark jobs require more AWS expertise.
What is dlt (Data Load Tool)
Pros
- Open-source and free to use
- High flexibility and control via Python code
- 60+ pre-built connectors with automatic schema evolution
- Built-in incremental loading and state management
- Embeddable in any orchestration (Airflow, Prefect, cron, etc.)
Cons
- No graphical UI—code-first, so not accessible to non-developers
- Requires engineering effort to deploy and schedule (no managed SaaS)
- Limited built-in transformations compared to dedicated ETL tools
- Monitoring and observability must be built around code (no native dashboard)
- Smaller community and support compared to more established tools
A reviewer on Medium:
What I like about dlt (Data Load Tool)
dlt is lightweight, customizable, and removes a lot of the boilerplate around API ingestion. With just a few lines of Python, we were able to create robust pipelines that handle schema changes and incremental loads seamlessly.
What I dislike about dlt (Data Load Tool)
What is Weld
Pros
- Premium quality connectors and reliability
- User-friendly and easy to set up
- AI assistant
- Very competitive and easy-to-understand pricing model
- Reverse ETL option
- Lineage, orchestration, and workflow features
- Advanced transformation and SQL modeling capabilities
- Ability to handle large datasets and near real-time data sync
- Combines data from a wide range of sources for a single source of truth
Cons
- Requires some technical knowledge around data warehousing and SQL
- Limited features for advanced data teams
A reviewer on G2 said:
What I like about Weld
First and foremost, Weld is incredibly user-friendly. The graphical interface is intuitive, which makes it easy to build data workflows quickly and efficiently. Even with little experience in SQL and pipeline management, we found that Weld was straightforward and easy to use. What really impressed me, however, was Weld's flexibility. It was able to handle data from a wide variety of sources, including SQL databases, Google Sheets, and even APIs. The solution also allowed us to customize my data transformations in a way that best suited my needs. Whether I needed to clean data, join tables, or aggregate data, Weld had the necessary tools to accomplish the task. Weld's performance was also exceptional. I was able to run large-scale ETL jobs quickly and efficiently, with minimal downtime via a Snowflake instance and visualization via own-hosted Metabase. The solution's scalability meant that I could process more data without any issues. Another standout feature of Weld was its support. I never felt lost or unsure about how to use a particular feature, as the support team was always quick to respond to any questions or concerns that I had. Overall, I highly recommend Weld as an ETL solution. Its user-friendliness, flexibility, performance, and support make it an excellent choice for anyone looking to streamline their data integration processes. I will definitely be using Weld for all my ETL needs going forward.
What I dislike about Weld
Weld is still limited to a certain number of integrations - although the team is super interested to hear if you need custom integrations.
AWS Glue vs dlt (Data Load Tool): Ease of Use and User Interface
AWS Glue
AWS Glue Studio provides a visual job authoring interface where you can drag-and-drop nodes to transform data, but deeper customizations still require PySpark code. The console UI can be intimidating for new users.
dlt (Data Load Tool)
dlt has no graphical interface—pipelines are defined in Python code, making it easy for developers comfortable with code but inaccessible to non-technical users.
AWS Glue vs dlt (Data Load Tool): Pricing Transparency and Affordability
AWS Glue
Glue charges per Data Processing Unit (DPU)-hour; for example, running a small job for one hour costs ~$0.44 * number of DPUs used. While serverless, large or long-running jobs can become costly if not optimized.
dlt (Data Load Tool)
As an open-source library, dlt is free to use. Users only pay for the infrastructure required to run pipelines, making it highly affordable compared to paid SaaS solutions.
AWS Glue vs dlt (Data Load Tool): Comprehensive Feature Set
AWS Glue
Features include automated schema discovery (Glue Data Catalog), PySpark/Scala job generation, job scheduling & triggers, DataBrew for visual data prep, and Glue Workflows for orchestration. Also supports streaming ETL via Glue streaming jobs.
dlt (Data Load Tool)
dlt provides core pipeline features: connector library, schema inference, incremental loading, and state management. It supports major destinations (Snowflake, BigQuery, Redshift, PostgreSQL, Databricks) and allows in-Python transformations or dbt integration.
AWS Glue vs dlt (Data Load Tool): Flexibility and Customization
AWS Glue
Glue allows custom PySpark scripts, supports Python libraries via wheel files, and you can integrate with AWS Lambda for custom triggers. However, debugging and local runs can be challenging compared to self-managed Spark.
dlt (Data Load Tool)
Because pipelines are written in Python, dlt offers unmatched customization—developers can fetch from any API, implement custom logic, and integrate with any orchestration or monitoring framework. This flexibility requires engineering investment but allows tailor-made solutions.
Summary of AWS Glue vs dlt (Data Load Tool) vs Weld
Weld | AWS Glue | dlt (Data Load Tool) | |
---|---|---|---|
Connectors | 200++ | 50+ | 60+ |
Price | €99 / Unlimited usage | $0.44 per DPUs-hour (development endpoints) + per-job costs | Free (open-source) |
Free tier | No | Yes | No |
Location | EU | AWS Global (multi-region) | DE |
Extract data (ETL) | Yes | Yes | Yes |
Sync data to HubSpot, Salesforce, Klaviyo, Excel etc. (reverse ETL) | Yes | No | Yes |
Transformations | Yes | Yes | Yes |
AI Assistant | Yes | No | No |
On-Premise | No | No | Yes |
Orchestration | Yes | Yes | No |
Lineage | Yes | Yes | No |
Version control | Yes | No | Yes |
Load data to and from Excel | Yes | Yes | No |
Load data to and from Google Sheets | Yes | No | No |
Two-Way Sync | Yes | No | No |
dbt Core Integration | Yes | Yes | No |
dbt Cloud Integration | Yes | No | No |
OpenAPI / Developer API | Yes | No | Yes |
G2 Rating | 4.8 | 4.1 |
Conclusion
You’re comparing AWS Glue, dlt (Data Load Tool), Weld. Each of these tools has its own strengths:
- AWS Glue: features include automated schema discovery (glue data catalog), pyspark/scala job generation, job scheduling & triggers, databrew for visual data prep, and glue workflows for orchestration. also supports streaming etl via glue streaming jobs. . glue charges per data processing unit (dpu)-hour; for example, running a small job for one hour costs ~$0.44 * number of dpus used. while serverless, large or long-running jobs can become costly if not optimized. .
- dlt (Data Load Tool): dlt provides core pipeline features: connector library, schema inference, incremental loading, and state management. it supports major destinations (snowflake, bigquery, redshift, postgresql, databricks) and allows in-python transformations or dbt integration.. as an open-source library, dlt is free to use. users only pay for the infrastructure required to run pipelines, making it highly affordable compared to paid saas solutions..
- Weld: weld integrates elt, data transformations, and reverse etl all within one platform. it also provides advanced features such as data lineage, orchestration, workflow management, and an ai assistant, which helps in automating repetitive tasks and optimizing workflows.. weld offers a straightforward and competitive pricing model, starting at €99 for 2 million active rows, making it more affordable and predictable, especially for small to medium-sized enterprises..