Comparing Alooma with Estuary and Weld



What is Alooma
Pros
- Real-time streaming ETL with automatic schema drift handling.
- Minimal coding: visual pipeline UI with built-in connectors to databases, Kafka, APIs, and SaaS apps.
- Exactly-once delivery guarantees to BigQuery, eliminating duplicate data.
Cons
- Standalone Alooma product is discontinued—functionality now lives in GCP services (e.g., Dataflow, Data Fusion).
- Migrating legacy Alooma pipelines to GCP-native services requires rework, as UI and features differ from original Alooma.
Google Cloud’s Dataflow (Alooma integration):
What I like about Alooma
Alooma’s ease of connecting live streaming data sources directly into BigQuery with automated schema management was revolutionary for our real-time analytics.
What I dislike about Alooma
Since Google integrated Alooma into its native services, the standalone product no longer exists, so new users must migrate to Dataflow or Data Fusion.
What is Estuary
Pros
- Purpose-built for real-time CDC and streaming ETL with sub-100ms latency.
- Automatic schema evolution with exactly-once delivery guarantees.
- 200+ no-code connectors for databases, SaaS apps, and message queues.
- Flexible deployment: public cloud, private cloud, or self-hosted (BYOC).
Cons
- Premium pricing model ($0.50/GB consumed + connector fees) can be expensive for small teams.
- Still growing connector catalog; niche or very new APIs may require custom work.
- Smaller community compared to older open-source tools, meaning fewer community-built resources.
Estuary Pricing Page:
What I like about Estuary
Estuary’s real-time, no-code model is magical—getting data instantly with minimal effort and near-zero pipeline maintenance. Plus, their support is fantastic.
What I dislike about Estuary
Pricing can be high for lower-volume teams, and some less-common connectors are still in development, which limits immediate use cases for niche sources.
What is Weld
Pros
- Premium quality connectors and reliability
- User-friendly and easy to set up
- AI assistant
- Very competitive and easy-to-understand pricing model
- Reverse ETL option
- Lineage, orchestration, and workflow features
- Advanced transformation and SQL modeling capabilities
- Ability to handle large datasets and near real-time data sync
- Combines data from a wide range of sources for a single source of truth
Cons
- Requires some technical knowledge around data warehousing and SQL
- Limited features for advanced data teams
A reviewer on G2 said:
What I like about Weld
First and foremost, Weld is incredibly user-friendly. The graphical interface is intuitive, which makes it easy to build data workflows quickly and efficiently. Even with little experience in SQL and pipeline management, we found that Weld was straightforward and easy to use. What really impressed me, however, was Weld's flexibility. It was able to handle data from a wide variety of sources, including SQL databases, Google Sheets, and even APIs. The solution also allowed us to customize my data transformations in a way that best suited my needs. Whether I needed to clean data, join tables, or aggregate data, Weld had the necessary tools to accomplish the task. Weld's performance was also exceptional. I was able to run large-scale ETL jobs quickly and efficiently, with minimal downtime via a Snowflake instance and visualization via own-hosted Metabase. The solution's scalability meant that I could process more data without any issues. Another standout feature of Weld was its support. I never felt lost or unsure about how to use a particular feature, as the support team was always quick to respond to any questions or concerns that I had. Overall, I highly recommend Weld as an ETL solution. Its user-friendliness, flexibility, performance, and support make it an excellent choice for anyone looking to streamline their data integration processes. I will definitely be using Weld for all my ETL needs going forward.
What I dislike about Weld
Weld is still limited to a certain number of integrations - although the team is super interested to hear if you need custom integrations.
Alooma vs Estuary: Ease of Use and User Interface
Alooma
Alooma’s web-based pipeline builder allowed users to drag-and-drop connectors for streaming or batch data, apply transformations, and route data to BigQuery with just a few clicks. The interface auto-generated SQL when possible.
Estuary
Estuary’s UI is intuitive: users can add connectors, configure CDC streams, and specify destinations in a few clicks. Complex transformations can be written in SQL or TypeScript directly in the Flow editor, but most tasks are handled via no-code connectors.
Alooma vs Estuary: Pricing Transparency and Affordability
Alooma
No longer available as a separate product. Users adopt equivalent GCP services (Dataflow, Data Fusion) which have pay-as-you-go pricing under the GCP pricing model.
Estuary
While Estuary provides a 10 GB/month free tier and a 30-day trial, its consumption-based pricing ($0.50/GB + connector fees) can become costly at scale. Teams processing hundreds of GBs per month should budget accordingly.
Alooma vs Estuary: Comprehensive Feature Set
Alooma
Alooma supported real-time ingestion from Kafka, databases (MySQL, PostgreSQL), logs, REST APIs, and SaaS apps, with built-in transformations (masking, enrichment). It automatically handled schema changes, and could write to BigQuery partitions.
Estuary
Key features include real-time CDC (sub-100ms latency), batch and streaming pipelines, automated schema evolution, and in-stream or post-load transformations via SQL/TypeScript or dbt. It also supports Kafka-compatibility and private storage for data replay.
Alooma vs Estuary: Flexibility and Customization
Alooma
Users could write custom JavaScript transforms or Python UDFs for complex logic. The platform managed infrastructure, but custom connectors required Eloqua code or support.
Estuary
Estuary allows custom TypeScript transforms in-stream or SQL in-destination. Pipelines can be managed via CLI (flowctl) and integrated into CI/CD. While most connectors are no-code, custom connectors can be built using the open-source Flow SDK.
Summary of Alooma vs Estuary vs Weld
Weld | Alooma | Estuary | |
---|---|---|---|
Connectors | 200+ | 100+ | 200+ |
Price | €99 / 2 connectors | N/A (product retired; GCP service pricing applies) | $0.50/GB consumed + per-connector fee |
Free tier | No | No | Yes |
Location | EU | Sunnyvale, CA, USA (pre-acquisition) | New York, NY, USA |
Extract data (ETL) | Yes | Yes | Yes |
Sync data to HubSpot, Salesforce, Klaviyo, Excel etc. (reverse ETL) | Yes | No | No |
Transformations | Yes | Yes | Yes |
AI Assistant | Yes | No | No |
On-Premise | No | No | Yes |
Orchestration | Yes | Yes | Yes |
Lineage | Yes | No | Yes |
Version control | Yes | No | Yes |
Load data to and from Excel | Yes | No | No |
Load data to and from Google Sheets | Yes | No | Yes |
Two-Way Sync | Yes | No | No |
dbt Core Integration | Yes | No | Yes |
dbt Cloud Integration | Yes | No | No |
OpenAPI / Developer API | Yes | No | Yes |
G2 Rating | 4.8 | 4.8 |
Conclusion
You’re comparing Alooma, Estuary, Weld. Each of these tools has its own strengths:
- Alooma: alooma supported real-time ingestion from kafka, databases (mysql, postgresql), logs, rest apis, and saas apps, with built-in transformations (masking, enrichment). it automatically handled schema changes, and could write to bigquery partitions. . no longer available as a separate product. users adopt equivalent gcp services (dataflow, data fusion) which have pay-as-you-go pricing under the gcp pricing model. .
- Estuary: key features include real-time cdc (sub-100ms latency), batch and streaming pipelines, automated schema evolution, and in-stream or post-load transformations via sql/typescript or dbt. it also supports kafka-compatibility and private storage for data replay. . while estuary provides a 10 gb/month free tier and a 30-day trial, its consumption-based pricing ($0.50/gb + connector fees) can become costly at scale. teams processing hundreds of gbs per month should budget accordingly. .
- Weld: weld integrates elt, data transformations, and reverse etl all within one platform. it also provides advanced features such as data lineage, orchestration, workflow management, and an ai assistant, which helps in automating repetitive tasks and optimizing workflows.. weld offers a straightforward and competitive pricing model, starting at €99 for 2 million active rows, making it more affordable and predictable, especially for small to medium-sized enterprises..